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Abstract This paper addresses the question: how does the band structure for a regular lattice 
change as the lanice itself is allowed 10 go smoothly 10 its mntinuum limit (allemarively: how 
does lanice granularity affect band structure)? The energy of the lowest allowed band in a 
general one-dimensional lattice is oblained explicitly as a power series in the lattice wnstant 
and in wave vector. The band structure is shown to be robustly freeelectron-like for small 
but finite lattice constant The siudy was suggesled by questions arising in delta-doping in 
semiconductors. 

1. Introduction 

The existence of electron energy bands in solids, and their general properties, have been the 
subject of intense study since the early days of the subjed Many results have become 
standard knowledge. Recent developments in semiconductors, and the advent of new 
fabrication techniques for quantum electronic systems, have brought some of the basic 
questions concerning band theory into new focus. Questions which did not seem interesting 
at one time have tended to become matters of practical interest in these new situations. This 
is the context of the present paper. 

The question considered here is the following (we consider one dimension, for 
simplicity). We think of an electron as living in the space defined by the underlying 
lattice on which the electron lives. In the absence of its lattice, the electron is the usual 
free electron. In the presence of its lattice (a 'standard' lattice, say, with standard potential 
strength and standard lattice constant), the electron reacts to the lattice via its energy band 
structure, in a way studied in depth, for example, by Kohn [I]. 

Now consider changing the granularity of the underlying lattice. By this is meant that 
the lattice spacing is allowed to shrink to zero, but in such a way that the average potential 
strength per unit length remains constant (a more precise definition is given in section 3). 
An analogy would be a set of identical equally spaced point charges on a line. The spacing 
between charges is then shrunk, while the magnitude of the charges is decreased in such a 
way that the average charge per unit length of line remains constant. 

In the limit of vanishing lattice constant one has a constant potential; the electron reacts 
to this by behaving like a free electron. But how, precisely, does the electron react when 
the granularity of its lattice is increased? In other words, how soon, and in what fashion, 
do lattice-dependent corrections arise to free-electron motion as the lattice becomes more 
granular? 

This question has been suggested by deltadoping experiments in semiconductors [2-4]. 
In layer-by-layer semiconductor growth, a random collection of donors can be placed on 
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a single crystal plane. The donated electrons feel the Coulomb attraction of the plane of 
ionized donors and become trapped in the vicinity of that plane, forming a two-dimensional 
electron gas. This process is very well described by approximating the plane of ionized 
donors by a uniform plane sheet of positive charge [5-8]. 

The fact that the approximation is so good is puzzling in itself, since it seems to work 
well even when the individual charges are very far apart, of the order of an effective 
Rydberg. Screening of the donor potential will surely play some role. On the other hand, 
the approximation still seems to be a good one even in physical situations [9,10] such that 
very few electrons are trapped in the well. Is there any good reason why this should be the 
case? 

To answer this question in full generality, for a disordered collection of donors, is a 
challenging and unsolved problem. In the first instance we therefore consider a similar but 
much simpler problem of the reaction of an electron to a regular collection of potentials, 
to see whether an apparent insensitivity of an electron to the underlying granularity of the 
space in which it lives might for some reason be a general properly of the band structure. 
As will be seen, one can indeed obtain a general answer to this question, at least for a 
one-dimensional lattice. 

2. Dispersion relation from the transfer matrix 

The formalism used here differs slightly from that found in many textbooks [I l l ,  and we 
therefore set it out briefly for clarity and convenience. 
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The Schrijdinger equation 

for an electron of mass m and charge -e can be written in the form 

(1) 
d 
dx 
-@(X) = C(X) *(X) 

where * is defined to be the two-component vector 

and C is the 2 x 2 matrix 

Standard notation is used. V ( x )  is a one-dimensional periodic potential with period a and 
E is the energy of an electron in this potential. 

A transfer matrix T can be defined by the relation 

@(U)  = T *(O) (4) 
where a matrix product is understood. T can be calculated iteratively by integrating (I) 
between 0 and a: 

and using this result repeatedly to replace the rightmost term in the same equation 



Band structure for small lattice constant 5861 

and so on. The transfer matrix defined by (4) can thus be expressed in terms of the 
'component matrices' C by the relation 

We note in passing that this infinite sum may be expressed more succinctly by use of 
a space-ordering operator 77. defined in analogy to the time-ordering operator familiar from 
quantum field theory 1121: R acting on any product f (x1) ' .  . . f ( x . )  re-orders the terms of 
the product in such a way that any position argument xi is 2 than the arguments of terms 
to the right of it. and 5 the arguments of terms to its left. In terms of this space-ordering 
operator R, the transfer matrix T can be written symbolically as 

The band structure (dispersion relation) for the lattice is given, as in the standard 
approach [ I  I]. by the equation 

cos(ka) = $TraceT (6) 
where k is the lattice wave vector and a the lattice constant. Note that, although C ,  and 
thus T, are of mixed dimensions, the diagonal elements of T are dimensionless, as they 
must be for (6) to be meaningful. 

3. Isolation of small parameter (non-dimensional transfer matrix; how to define a 
potential for a shrinking lattice) 

To discuss an infinite lattice with a lattice constant which shrinks to zero, one must have a 
ruler (that is, a reference length) which does not shrink. We label this arbitrary reference 
length ao. We want to determine how the band structure behaves as we shrink the lattice, 
letting (also) + 0. To ensure that this limit is taken in a consistent fashion, we change the 
formalism somewhat. to make dependence on the small parameter ala0 completely explicit. 
We therefore go back to the Schrodinger equation itself and write it in non-dimensional 
terms: 

Here 

1 = (x/ao) (8) 

(9) 
is the reference energy automatically associated with the reference length ao, This leads to 
a dimensionless transfer matrix T which is defined in terms of e(?) by 

and 
Eo = fi2/2ma0 2 

where the derivative @' is by definition 
@'(?) (d@/df). 

The new transfer matrix T can be written in analogy to (5) as 
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with component matrices 

which are now dimensionless. 
It is convenient to change variables in (IO), defining 

Y = ( x / a )  (12) 
or equivalently 

i = (a/ao) y. 
Let us also assume that by 'shrinking the lattice' we mean that 

V = V(x,a) = V(y). 
This is in fact what has been assumed implicitly all along, and implies that the potential 
retains its original shape (over a unit cell) as the lattice shrinks. It also gives, as a bonus, 
the required property that the potential strength is constant per unit (invariant) length of 
lattice, since 

I I U  - J dx V ( x )  = = 1 dy V(y). 
a 0  

Since V = V(y), then also D( i ,  a) = D(y), and (8) can now be written 

(15) 
Equation (15) is a crucial result: an explicit expansion of the transfer matrix in powers of 
the lattice constant. 

The final point to note is that, although the transfer matrix of (15) is not the same as 
its dimensional counterpart T in (5). both matrices have the same diagonal elements. The 
band structure is thus given by 

We note that terms in odd powers of (a/ao) drop out of (16) because they have zero trace 
(since D itself is offiliagonal, from (1 1)). 

4. Evaluation of transfer matrix 

It is convenient to write the component matrices Di = D(y;) in ( I  1) as 

where the terms d and Vi in the second line are respectively the first and second of the 
2 x 2 matrices defined in the previous step of (17). Of these, only v; depends on y;, the 
relative position within the unit cell. Here 

(18) E E ( E  - V)/&o 
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and 

vi =~(V(y;) - V)/€O (19) 
with 

D;Dj = (d+v;)(d+vj) = d 2 + v ; d + d v j + v f v j  = (G' :&) + ( 
Thus, for example, fourth-order products are given by 

being the average potential defined in (14). 
The products in the dispersion relation (16) can be built up from painvise products of D 

:) +O. 0 U' 

(2Q) 

and so on. 
To evaluate the dispersion relation (16). we need the mces of these even products of D. 
The Trace of 1 is 2. 
The Trace of D;Dj (the term in (a/@)2) is 

2 

2(--E) + C(U") 
"=I 

where the summation stands for (vi + Vj). 
The Trace of DjDjDkDf (the term in (a/ad4) is 

The Trace of DiDjDkDfD,Dn (the term in (a/@)6) is 

and so on. These and succeeding traces form the integrands for the multiple integrals 
appearing in the dispersion relation expansion of'(16). 

5. Expansion of the dispersion relation 

The dispersion relation expansion we have obtained may now be  evaluated in terms of 
ordered integrals of terms such as those given in (22)-(24). These integrals are conveniently 
defined and labelled as in appendix A terms Ij indicate j-fold integration of sums of 
pairwise products of U ;  J refer to integrals of sums of products of three U; K refer to 
integrals of products of four U: and so on. These sets can be thought of as 'standard 
integrals', whose values depend upon the particular potential of interest, but which are all 
'of order unity', since they have no hidden dependence on the small parameter (a/ao). 

Expanding both sides of the dispersion relation (16). one obtains 
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where I, J ,  K and so one are defined in appendix A. 
It is a general property of the expansion (25) that there is no term of the form E"-' 

in the bracket which multiplies (a/ao)>; this follows from (A5). This fact has important 
implications for the band structure. In particular, it will follow that the band structure near 
the continuum limit (small lattice parameter) will be very insensitive to expansion of the 
lattice. Another way of saying this is that, as will become evident, the band structure is 
much more robustly free-electron-like than one might expect a priori, as the underlying 
lattice becomes progressively more granular. 

[ E ( @  - v ] / E ,  = ~(kao), 
can be obtained easily from (25). either by a perturbation expansion, or else iteratively as 
illustrated in appendix B Using such a procedure, we obtain 
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The dispersion relation E = E ( k ) ,  or alternatively E 

Equation (26) gives an explicit construction for the band structure of the lowest allowed 
band, for a general one-dimensional potential V ( x ) .  This expansion is expected to be valid 
for small lattice parameter (a/ao) e 1 and for k-vectors up to order ( k q )  - 1. 

6. Results: why is the band structure 50 parabolic? 

The band structure for the continuum lattice (ala0 + 0) is simply 

E = (kao)'. (27) 
The band-edge energy is given by E =O, that is by E(0) = v, while the k-dependence of 
the energy is that of a free electron. The precise effects of lattice expansion reside in the 
adependence of the electron energy, and these effects are different depending on which 
property is of interest. 

The effect of lattice granularity will show up most strongly in the position of the band 
edge. The top line of (26) indicates that band-edge corrections will be evident to order 
(a/ao)2, the lowest order to which lattice corrections enter. The effective mass is inversely 
proportional to the square bracket in the second line of (26). In contrast to the band edge, 
(26) implies that the effective mass is only modified by lattice corrections to order ( a / a ~ ) ~ .  
Moreover, non-parabolicity of the band structure is even more insensitive to the granularity 
of the lattice, since it only enters (26) at order ( a / a ~ ) ~ .  It is therefore true quite generally 
that the band structure [E&) - E(O)] will be extremely insensitive to the fact that the 
electron lives in the underlying space of a granular lattice. In fact, inspection of particular 
examples (such as that of appendix B) indicates very little change indeed in band structure 
even for lattice constants as big as a -no. 

7. Results: lattice roughness 

The band structure we obtained is expressed in standard integrals 'of order unity' This 
statement should be qualified, however. In particular, it may become false if the potentia1 
strength should become very large compared to the reference energy (in some way yet 
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to be defined). Actually, what is at issue is not the average strength, but rather the relative 
strength of the deviation U = (V - V)/&O from that average, a sort of measure of the 
‘roughness’ of the potential. 

Instead of looking for some general definition of lattice roughness, one can instead 
obtain some idea of its effects by seeing how the predictions of (26)  are modified when U is 
multiplied by the number A (A = 1 in (26)). This corresponds to a change V 3 AV in the 
potential itself. It does not represent a simple change in the roughness of the potential. since 
a change in A also changes the band-edge energy when the lattice goes to its continuum 
limit; but we take the point of view that the position of the band edge is of little interest in 
the present context, especially since it depends in any case upon the arbitrary position of 
the zero of energy (we note, however, that for an arbitrary energy band the position of the 
band edge is often of experimental interest 191). 

The effects of increased lattice roughness on the band structure of a general one- 
dimensional potential V ( x )  can be obtained from (26) almost by inspection. If the potential 
roughness is varied by letting U -P Au, then (from appendix A) the standard integrals I ,  J ,  
K . . . change as 

I ,  A ~ I ,  J n + A 3 J n  K n + A 4 K  ,,.... (28) 
Equation (26)  shows that this change has various effects on the band structure, depending 
upon the aspect of interest. Explicitly 

Various conclusions follow from (29). For instance, the band edge itself depends linearly 
on A even in the limit (a/ao) + 0, with granularity corrections of order Az(a/ao)2. 

It might seem that our expansion of E(k)  in powers of (a/ao)’ would cease to be 
meaningful for a potential so strong that, say, A = (@/a) >> 1. Equation (29) suggests, 
however, that this is not the case. Ignoring changes in the band edge itself, if the potential 
is made so strong that V + (ao/a)zL‘, (29) predicts a band structure which depends more 
strongly on lattice granularity than that for the unmodified potential, in that effective mass 
corrections enter to order (a/ao)2 rather than to order ( a / ~ ~ ) ~ .  But corrections to band 
parabolicity are still suppressed, entering only to order ( ~ / a , , ) ~ .  Even for such strong 
potentials, then, the band structure is strongly parabolic, although less robustly so than for 
more moderate lattice potentials, when we are considering shrunken lattices a -sa@. 

8. Points for further study 

It is of interest to determine whether results similar to those presented here will hold for 
band structures in the vicinity of higher band minima. It is also of importance to determine 
whether results similar to those obtained here apply to lattices of higher dimensions. 

The present study was suggested by questions arising in the context of delta doping, 
where it is commonly assumed for practical purposes that the attractive donor potential 
arising from a disordered planar collection of ionized donors can be adequately approximated 
by a uniform plane sheet of charge with the same average charge density, both with respect 
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to subband energies and wavefunctions resulting from quantum confinement, and to the 
electron band structure in the plane of the well. The present work would seem to touch 
most directly on the second of these approximations. These and other implications of present 
results will be discussed elsewhere. 

We also note that the ‘general’ results presented here do not apply within the tight- 
binding model. This might have been guessed from the fact that, for instance, the effective 
mass emerging from the nearest-neighbour tight-binding Hamiltonian with constant off- 
diagonal elements is not the free-electron mass, but instead is inversely propoxtional to the 
strength of the off-diagonal potential {13]. Study of specific tight-binding examples also 
seems to indicate (a) that the continuum limit a -+ a0 need not give a parabolic band 
structure over the whole range (kao) 5 1, and @) that the limiting band structure may or 
may not be robust against changes in the lattice constant. These questions will be discussed 
in more detail elsewhere. 

9. Summary 

Given a one-dimensional periodic potential, the band structure E ( k )  of the associated lattice 
has been written in a way that demonstrates explicitly its transition to the continuum (free 
electron) limit. The continuum limit itself is specified as the limit a/@ -+ 0 with the 
lattice potential V ( x )  required to be of the form V ( x / a ) ,  where a is the lattice constant 
and a0 some tixed reference length. It has also been possible to see explicitly the interplay 
between lattice granularity effects and effects due to increasing the overall strength of the 
lattice potential. 

The results, (26) and (29). show that for (a/ao) c I the band structure is very robustly 
parabolic and free-electron like, even for lattices so granular that a approaches a0 for all the 
k-vectors that can legitimately be considered, that is fork up to kao - 1. These conclusions 
also hold, though less strongly, if the potential itself is allowed to become very strong. 
Specific illustrations of these results will be presented elsewhere. 
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Appendiv A. Standard integrals 

It is helpful to give convenient labels to the different terms which arise in the calculation 
of the dispersion relation expansion (14). The following ‘standard integrals’ form the 
calculational ingredients in this expansion. 

.=I’ ...in dyl . . .dy4[ulu3+~2~4] 

(i) Integrals I&: 

I, = 1 I . . . I” dyi ... ~ Y ~ ~ U I U ~ + U ~ U S + U I U ~ ~ U Z V ~ ~ U ~ U ~ + U ~ U ~ ]  (AI) 

and so on. Here vi denotes u(y i ) ,  and successive integrals of type I integrate the sum of all 
possible painvise ‘even’ products uiuj (that is, products uiuj with different even subscripts) 
plus all possible pairwise ‘odd‘ products. 
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(ii) Integrals J k :  

+ u4v6uR + u6uXuZ + uSVZu4] (A21 
and so on. Here successive integrals of type J integrate the sum of all possible three-member 
'odd' products uivjvk plus all possible 'even' ones. 

(iii) Integrals K I ~ :  

Ks =l '...ly' dyi . . . ~ ~ R [ U I U J U ~ U ~ + U ~ U ~ U ~ U ~ ~  

(-43) 
and so on. Integrals of type K involve the sum of all possible products of four vi with 
different odd indices plus all those with different even indices. 

(iv) Integrals L2:  

and so on. Integrals L have integrands having all possible different 'odd' plus all possible 
'even' products of five U;. 

The values of the integrals I, J, K, . . . will depend upon the particular potential under 
consideration, but are all 'of order unity', since the dependence on the small parameter 
(a/ao) has been made explicit by taking it outside the integrations. 

Finally, we note that the integrals of the form 
Ir l' .../dIr- '  dy, ... dyz, cui=O 

i=l 
(-45) 

vanish identically. This follows because 

1' dy U(Y) = 0 (A6) 

in consequence of its definition (19), and because it can be shown (for example by induction) 

dY.[u(~i)+...+u(~,)l=- '"-I J b  dyu(y). (A7) ih dyl . . . l"-' that 

(n - l)!  0 

Appendix B. Iterative solution of dispersion-relations (an example) 

Here we illustrate the iterative method used to solve (25) by applying it to the equation 

. .  

Quation (BI) is the dispersion relation for the simple Kronig-Penney potential 
m 

n=-m 
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Here k is the lattice momentum, while q is the wave vector of the electron 
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q2 = -2mEIh'. 

easily obtained in the same fashion. We define 
Equation (Bl) may be solved iteratively for q = q(k).  Other dispersion relations are 

x = (ka)' = ~(kuo)' y = (qa)' = 6(qUo)' 6 (U/@)'. (B3) 

Equation (BI) then has the form 

F ( x )  = G(Y) + ~ H ( Y )  034) 

where 

We choose (B4) such that g'O'(y) = y, and look for y = y ( x )  as a power series in x, and 
in the small parameter S. The solution,to nth order in S is denoted yn. 

Iteration of (B4) is straightforward, yo is the solution of the (linear) equation 

f'O'(x) = g'O'(y0) = yo. 

Similarly, for y~ we solve 

yl = g'O'(y1) = -g"'(yo) + f"' + f"' +Sh"'(yo). 

For YZ 
yz = g'O'(y2) = -g'"(~~)~~'''(~~"f'~'+f~~'+f'''fS[h'~'(~i)+h'''(~o)] 

and so on. 
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